
Effective Use of Prim’s Algorithm for Model
Based Test case Prioritization

Shweta A. Joshi#, Prof. D.S. Adiga*, Prof. B.S. Tiple#

#Master of Computer Engineering student,

MAEER’s MIT, University of Pune- 411038, Maharashtra, India
*Associate Professor,

MAEER’s MIT, University of Pune- 411038, Maharashtra, India

Abstract— This Software testing is “Performing Verification
and Validation of the Software Product” for its correctness
and accuracy of working. Every time it is not possible to
perform each and every test case. Hence it is important to
decide test cases prioritization.
The aim of Test case prioritization is to prioritize the test case
sequences and finding the faults as early as possible to
improve proficiency of testing. Here we define a new
prioritization method which prioritizes test cases in
descending order for Component Based Software
Development (CBSD) using the concept of Prim’s algorithm.
Our main aim is to implement and observe the model based
test case prioritization algorithm which make use of CIG
(Component interaction Graph) as input for a medium/ large
size CBSD (Component Based Software Development Process)
by taking any real-time system as an example and to generate
prioritized test cases in descending order.

Keywords— CBSD, CIG, Prim’s, Test Case Prioritization.

I. INTRODUCTION

Testing includes distinguishing the test cases which can
find the errors in the given code. Test case prioritization is a
method to order the test case in a sequence that provides
some objective function. Basically, Test case prioritization
is classified in two methods: code-based and model-based
test case prioritization. In code-based test case prioritization,
source code of the system is used to prioritize the test cases.
Whereas in model based method any type of model is used
to prioritize the test cases. If test cases are prioritized with
the help of model based method then fault finding is
comparatively easy than code based method. Also a model-
based test case prioritization may be a cheaper solution.
Hence, a model-based test case prioritization is best
approach for component based software system.

As there is rapid development in software industries there
is a demand of increasing use of component based software
development processes. A Component interaction graph
depicts that interrelation among different components.
Hence by representing component interaction using CIG we
can outline the test case sequences.

Here we will discuss new test case prioritization
technique which describes component interaction between
different components by giving CIG as input and based on
it which is able to prioritize test case sequences in
descending order by applying Prim’s algorithm on it.

II. PRIORITIZATION METHODOLOGY

As software time to market becomes shorter day by day,
there is significant increase in the use of commercial off the
shelf components. It is important to use the testing
technique based on component which can increase the fault
finding rate. There are different techniques to prioritize test
cases which can detect more defects in lesser time.
Following are some papers which list out different
techniques of test case prioritization.

Majorly there are two different techniques; code based
test case prioritization and model based test case
prioritization. In code based method system is dependent on
source code completely whereas in model based method
system captures the structure and behavioural aspects. Also
model based technique finds faults in very less time as
compared to code based approach.

A.Model based test case prioritization using UML state

chart diagram
In this technique test cases are prioritized for component
based system retesting. Here state chart diagram is
considered for each component which represents state
transitions among each component then it constructs
Component Interaction graph (CIG) to show an
interrelation within components. Prioritization algorithm
counts interrelation among components and interrelation
within components. It depends on maximum state changes
occur among and within components as well as database
access during test case execution.

III. RELATED WORK

In today’s world day by day drastic changes are in
software which needs to be more proficient for this
component based software development process provides
platform to detect faults in quick time and refine code
shortly. To perform such tasks developers/ testers needs to
find out best one out of alternatives that is ‘next best’
known as ‘greedy’ method.

Basically greedy methods are simple, easy-to-implement
and provide solutions to complex problems by deciding
which next step will provide the most efficient result. Such
algorithms are called greedy because optimal solution to
each smaller instance will provide an effective output; the

Shweta A. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3444-3447

www.ijcsit.com 3444

algorithm doesn’t consider the larger problem as a whole.
Greedy methods works with two different criteria:

 Kruskal’s algorithm
In this algorithm at each stage, the edge with the least cost
is processed

Assume;
G = (V, E)
Keep track of connected components of graph with edges
Initially components are single nodes
At each stage, add the cheapest edge that connects two

nodes not already connected
Experimental study of Kruskal’s algorithm states that
Kruskal can have better performance if the can be sorted in
linear time; edges in each component are already sorted.

 Prim’s algorithm

There are quite limitations with kruskal’s method; so for
our model based prioritization technique we finalized
Prim’s method to prioritize test cases which are generated
in random sequence which we have to arrange in some
sorted order.

A. Implementation Details of Prim’s Algorithm

As discussed in model based prioritization testers need to
check behavioural aspects of the system i.e. multiple state
changes occurred, the test case is going to access the data
base or single attribute or multiple attributes from a
database access. Hence I am proposing new optimization
technique i.e. Prim’s Algorithm to explore more effective
prioritized test cases which can find out defects in earlier
time and can maximize the effectiveness of any medium/
large system. As already discussed Prim's algorithm is an
algorithm in graph theory that finds a minimum spanning
tree for a connected weighted graph. This means it finds a
subset of the edges which converts it in a tree that includes
every vertex, where the total weight of all the edges in the
tree is minimized. If the graph is not connected, then it will
only find a minimum spanning tree for one of the connected
components.

Framework of model based test prioritization using
prim’s algorithm is given below in Fig. 1.

Fig. 1. Framework of proposed system

In this paper, for proposed system CIG graph defined as
input data set along with number of test cases written for
each state in components, direct access i.e. intrastate
changes it means higher priority is given to intrastate
change whereas, indirect access i.e. interstate changes
which have less priority for implementing prioritized test
case suite sequence . CIG of components shows the
interaction between the components. Based on prim’s
strategy algorithm we follow the steps and prioritize the test
cases. Also interstate change and outer state change for
calculation to set the priority according to algorithm. Lastly
we will show the decreasing order of test cases according to
the priority. We also try to explore the graphical
representation of time taken to execution if numbers of
components are present.

B. Algorithm: Prioritization

Input:
TS=T1, T2…Tj, Test Suite.
C=C1, C2, C3...Cm set of components.
S= S1, S2, S3…Sn, set of states.
U=time.

Output:
Prioritized test sequence T’

1. Start.
2. Set T’ as Empty.
3. T1[intracount] = 0; T2[intercount] = 0;
4. If Ck (Si) -> Ck (Sj) Then w = 0. // If states are

interacting in same component.
5. If Ck (Si) -> Cl(Sj) Then w = 1. // If states are

interacting in different component.
6. Select any state of any component, set S = {s}.
7. T1 [intracount] = S(T) //Add Test

Case Suite of State into T1.
8. intracount ++;
9. Find lightest weight interactive state such that one

endpoint is in S and other is in V\S.
10. If (w = 0) Then
11. T1 [intracount] = S (T) //Add

Test Case Suite of State into T1.
12. intracount ++;
13. Else
14. T2 [intercountt] = S(T) //Add Test

Case Suite of State into T2.
15. intercount++;
16. End If
17. If (V\S! = ø) Then Step 9. //If no more

state connected
18. T = T + T1; //Add

T1 into the T
19. T = T+ T2; //Add

T2 into the T
20. Set T’ = Reverse of T.
21. Output T’

Shweta A. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3444-3447

www.ijcsit.com 3445

IV. RESULTS & DISCUSSION

This system is going to work with 5 modules named as

A.Requirement Specifications

In this module we have to count number of components
and number of states in each component all data is stored
and retrieved using MySQL.

B.Component Interaction Graph

With this module we can represent interactions and state
changes in component or within different components i.e.
interchanges and interchanges of states respectively using
JavaAppletgraph we have shown here screenshot of CIG as
below.

Fig 1 Screenshot of CIG

C.Test Cases

Here all test cases are generated for each state in the
components and prioritization is defined with state changes
in component or among components.

D.Prioritization using Prim’s algorithm

In this module actual prioritization can be performed on
the basis of CIG generated and number of test cases listed
for every state with prior knowledge of Prim’s algorithm. In
following table first column represents more weighted test
cases i.e. DB direct which are prioritized first and second
column shows test cases which have less priority
i.e.DBIndirect.

DBdirect and DBindirect
Table I

Result set 1 of test cases
DBdirect

(intrastate changes)
DBindirect

 (interstate changes)
T1 T2
T2 T4
T3
T4

E. Prioritized test suites

After sorting test cases in this module we are finally
representing prioritized test cases in decreasing order
according to its priority as shown below

Prioritized Test Case Sequence

Table II

 Result set 2 of prioritized test sequence

1. T2
2. T4
3. T1
4. T3

V. CONCLUSION

For prioritizing test cases there are many algorithm
instead of these a new prioritization technique is introduced
using prim’s algorithm for finding defects in the component
based software in less time. Here more importance is given
to component interactions because maximum defect occur
when components are going to interact with each other.
This approach is mainly applicable to test the component
composition in case of component based software
maintenance.
Finally our algorithm is found to be very effective in

 Maximizing the objective function.
 Minimizing the cost of system retesting.

Future Challenges

In future we can extend this work as; the system can use
regression testing strategy by adapting the knowledge of
Genetic algorithm. Also we can compare efficiency of this
algorithm with other searching algorithm.

VI. ACKNOWLEDGEMENT

 I feel immense pleasure while presenting this work
and am very thankful to my guide Prof. D. S. Adiga, and
Prof. B.S. Tiple, Dept. of Computer Engineering of
Maharashtra Institute of Technology, Pune for her valuable
suggestions and support.
 I would like to express my sincere thanks to our senior
professor and M.E. Coordinator Prof. V.S.Jagtap for
teaching me the fine points which are helpful for this
completing work. I am also thankful to our Principal of
MIT, Pune Dr. L. K. Kshirsagar for his consent to go
forward with this topic.

REFERENCES
[1] Sanjukta Mohanty, Arup Abhinna Acharya, Durga Prasad

Mohapatra, “A Model based prioritization technique for Component
based software retesting using UML state chart diagram”. 2011
IEEE Third Int’l Conf. on Electronics Computer Technology.

[2] G. Rothermel, R.H.Untch, C.Chu, M.J.Harrold, “Test Case
Prioritization: An Emperical Study,” in Proceedings of the 24th
IEEE International Conference Software Maintenance
(ICSM ’1999) Oxford, U.K, September 1999.

[3] P. Malangave, D. B. Kulkarni, “Efficient Test case Prioritization in
Regression Testing”.

Shweta A. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3444-3447

www.ijcsit.com 3446

[4] Z.Li, M. Harman, and R. M. Hierons,” Search Algorithms for
Regression Test Case Prioritization,” IEEE Transactions on
Software Engineering, Vol. 33, No. 4, April 2007.

[5] B. Korel, G. Koutsogiannakis, “Experimental Comparsion of Code
Based and Model model Based Test prioritization,” IEEE 2009.

[6] Hema Srikanth and Laurie Williams, “Requirements-Based Test
Case Prioritization,” North Carolina State University, 2005, ACM
SIGSOFT Software Engineering, pages 1-3.

[7] A. A. Acharya, S. K. Jena, “Component Interaction Graph: A new
approach to test component composition,” Journal of Computer
Science and Engineering, 2001, Volume 1, Issue 1.

[8] Y. Wu, D. Pan and M. Chen, “Techniques for testing component-
based software,” In Proceedings of the 7th IEEE International
Conference on Engineering of Complex Computer Systems,
001,Pp- 222-232.

[9] Sanjukta Mohanty, Arup Abhinna Acharya, Durga Prasad
Mohapatra, “A survey on model based test case prioritization”
International Journal of Computer Science and Information
Technologies, 2011,Vol. 2 (3) , 1042-1047.

[10] G. Rothermel, R. Untch, M. Harrol, “Prioritizing Test Cases For
Regression Testing,” IEEE Transactions on Software Engineering,
2001,volume 27, No. 10, pp. 929-948.

[11] Arup Abhinna Acharya and Sisir Kumar Jena, “Component
Interaction Graph: A new approach to test component composition”
Vol 2(3), 2011, 1042-1047.

[12] P. R. Srivastava, “Test Case Prioritization,” Journal of Theoretical
and Applied Information Technology, 2008, JATIT.

Shweta A. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3444-3447

www.ijcsit.com 3447

